Your nameFriend's name
Your emailFriend's email

Applying the cell-based coagulation model in the management of critical bleeding

Some of the material contained in this manuscript was presented by Dr Ho in an invited oral discussion session ‘Major Haemorrhage Management’ at the Australian Society of Anaesthetists National Scientific Congress in Melbourne on 17 September 2016. Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Western Australia


The cell-based coagulation model was proposed 15 years ago, yet has not been applied commonly in the management of critical bleeding. Nevertheless, this alternative model may better explain the physiological basis of current coagulation management during critical bleeding. In this article we describe the limitations of the traditional coagulation protein cascade and standard coagulation tests, and explain the potential advantages of applying the cell-based model in current coagulation management strategies. The cell-based coagulation model builds on the traditional coagulation model and explains many recent clinical observations and research findings related to critical bleeding unexplained by the traditional model, including the encouraging results of using empirical 1:1:1 fresh frozen plasma:platelets:red blood cells transfusion strategy, and the use of viscoelastic and platelet function tests in patients with critical bleeding. From a practical perspective, applying the cell-based coagulation model also explains why new direct oral anticoagulants are effective systemic anticoagulants even without affecting activated partial thromboplastin time or the International Normalized Ratio in a dose-related fashion. The cell-based coagulation model represents the most cohesive scientific framework on which we can understand and manage coagulation during critical bleeding.

ASA member / Anaesthesia and Intensive Care subscriber

If you are a member of the ASA or subscribe to the Anaesthesia and Intensive Care Journal please login to view entire article.

Register for free access

Please register for free access to this article.

Already registered

Click here to login now.